Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.480
Filtrar
1.
PLoS One ; 19(4): e0297669, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38598455

RESUMO

Capturing how the Caenorhabditis elegans connectome structure gives rise to its neuron functionality remains unclear. It is through fiber symmetries found in its neuronal connectivity that synchronization of a group of neurons can be determined. To understand these we investigate graph symmetries and search for such in the symmetrized versions of the forward and backward locomotive sub-networks of the Caenorhabditi elegans worm neuron network. The use of ordinarily differential equations simulations admissible to these graphs are used to validate the predictions of these fiber symmetries and are compared to the more restrictive orbit symmetries. Additionally fibration symmetries are used to decompose these graphs into their fundamental building blocks which reveal units formed by nested loops or multilayered fibers. It is found that fiber symmetries of the connectome can accurately predict neuronal synchronization even under not idealized connectivity as long as the dynamics are within stable regimes of simulations.


Assuntos
Caenorhabditis elegans , Conectoma , Animais , Caenorhabditis elegans/fisiologia , Rede Nervosa/fisiologia , Neurônios/fisiologia
2.
Science ; 384(6693): 338-343, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38635709

RESUMO

The computational capabilities of neuronal networks are fundamentally constrained by their specific connectivity. Previous studies of cortical connectivity have mostly been carried out in rodents; whether the principles established therein also apply to the evolutionarily expanded human cortex is unclear. We studied network properties within the human temporal cortex using samples obtained from brain surgery. We analyzed multineuron patch-clamp recordings in layer 2-3 pyramidal neurons and identified substantial differences compared with rodents. Reciprocity showed random distribution, synaptic strength was independent from connection probability, and connectivity of the supragranular temporal cortex followed a directed and mostly acyclic graph topology. Application of these principles in neuronal models increased dimensionality of network dynamics, suggesting a critical role for cortical computation.


Assuntos
Neurônios , Sinapses , Animais , Humanos , Sinapses/fisiologia , Neurônios/fisiologia , Células Piramidais/fisiologia , Roedores , Rede Nervosa/fisiologia
3.
Neuroimage ; 290: 120576, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490583

RESUMO

To elucidate how time of day, sex, and age affect functional connectivity (FC) in mice, we aimed to examine whether the mouse functional connectome varied with the day/night cycle and whether it depended on sex and age. We explored C57Bl6/J mice (6♀ and 6♂) at mature age (5 ± 1 months) and middle-age (14 ± 1 months). Each mouse underwent Blood Oxygen-Level-Dependent (BOLD) resting-state functional MRI (rs-fMRI) on a 7T scanner at four different times of the day, two under the light condition and two under the dark condition. Data processing consisted of group independent component analysis (ICA) and region-level analysis using resting-state networks (RSNs) derived from literature. Linear mixed-effect models (LMEM) were used to assess the effects of sex, lighting condition and their interactions for each RSN obtained with group-ICA (RSNs-GICA) and six bilateral RSNs adapted from literature (RSNs-LIT). Our study highlighted new RSNs in mice related to day/night alternation in addition to other networks already reported in the literature. In mature mice, we found sex-related differences in brain activation only in one RSNs-GICA comprising the cortical, hippocampal, midbrain and cerebellar regions of the right hemisphere. In males, brain activity was significantly higher in the left hippocampus, the retrosplenial cortex, the superior colliculus, and the cerebellum regardless of lighting condition; consistent with the role of these structures in memory formation and integration, sleep, and sex-differences in memory processing. Experimental constraints limited the analysis to the impact of light/dark cycle on the RSNs for middle-aged females. We detected significant activation in the pineal gland during the dark condition, a finding in line with the nocturnal activity of this gland. For the analysis of RSNs-LIT, new variables "sexage" (sex and age combined) and "edges" (pairs of RSNs) were introduced. FC was calculated as the Pearson correlation between two RSNs. LMEM revealed no effect of sexage or lighting condition. The FC depended on the edges, but there were no interaction effects between sexage, lighting condition and edges. Interaction effects were detected between i) sex and lighting condition, with higher FC in males under the dark condition, ii) sexage and edges with higher FC in male brain regions related to vision, memory, and motor action. We conclude that time of day and sex should be taken into account when designing, analyzing, and interpreting functional imaging studies in rodents.


Assuntos
Conectoma , Masculino , Feminino , Animais , Camundongos , Conectoma/métodos , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Giro do Cíngulo , Sono , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/fisiologia
4.
PLoS Comput Biol ; 20(3): e1011891, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38466752

RESUMO

Recent developments in experimental techniques have enabled simultaneous recordings from thousands of neurons, enabling the study of functional cell assemblies. However, determining the patterns of synaptic connectivity giving rise to these assemblies remains challenging. To address this, we developed a complementary, simulation-based approach, using a detailed, large-scale cortical network model. Using a combination of established methods we detected functional cell assemblies from the stimulus-evoked spiking activity of 186,665 neurons. We studied how the structure of synaptic connectivity underlies assembly composition, quantifying the effects of thalamic innervation, recurrent connectivity, and the spatial arrangement of synapses on dendrites. We determined that these features reduce up to 30%, 22%, and 10% of the uncertainty of a neuron belonging to an assembly. The detected assemblies were activated in a stimulus-specific sequence and were grouped based on their position in the sequence. We found that the different groups were affected to different degrees by the structural features we considered. Additionally, connectivity was more predictive of assembly membership if its direction aligned with the temporal order of assembly activation, if it originated from strongly interconnected populations, and if synapses clustered on dendritic branches. In summary, reversing Hebb's postulate, we showed how cells that are wired together, fire together, quantifying how connectivity patterns interact to shape the emergence of assemblies. This includes a qualitative aspect of connectivity: not just the amount, but also the local structure matters; from the subcellular level in the form of dendritic clustering to the presence of specific network motifs.


Assuntos
Neurônios , Tálamo , Neurônios/fisiologia , Simulação por Computador , Potenciais de Ação/fisiologia , Sinapses/fisiologia , Rede Nervosa/fisiologia , Modelos Neurológicos
5.
Adv Neurobiol ; 36: 639-657, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468056

RESUMO

The conscious perception of pain is the result of dynamic interactions of neural activities from local brain regions to distributed brain networks. Mapping out the networks of functional connections between brain regions that form and disperse when an experimental participant received nociceptive stimulations allow to characterize the pattern of network connections related to the pain experience.Although the pattern of intra- and inter-areal connections across the brain are incredibly complex, they appear also largely scale free, with "fractal" connectivity properties reproducing at short and long-time scales. Our results combining intracranial recordings and functional imaging in humans during pain indicate striking similarities in the activity and topological representation of networks at different orders of temporality, with reproduction of patterns of activation from the millisecond to the multisecond range. The connectivity analyzed using graph theory on fMRI data was organized in four sets of brain regions matching those identified through iEEG (i.e., sensorimotor, default mode, central executive, and amygdalo-hippocampal).Here, we discuss similarities in brain network organization at different scales or "orders," in participants as they feel pain. Description of this fractal-like organization may provide clues about how our brain regions work together to create the perception of pain and how pain becomes chronic when its organization is altered.


Assuntos
Mapeamento Encefálico , Fractais , Humanos , Mapeamento Encefálico/métodos , Encéfalo , Imageamento por Ressonância Magnética/métodos , Dor , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia
6.
Nature ; 627(8002): 157-164, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418877

RESUMO

The accumulation of metabolic waste is a leading cause of numerous neurological disorders, yet we still have only limited knowledge of how the brain performs self-cleansing. Here we demonstrate that neural networks synchronize individual action potentials to create large-amplitude, rhythmic and self-perpetuating ionic waves in the interstitial fluid of the brain. These waves are a plausible mechanism to explain the correlated potentiation of the glymphatic flow1,2 through the brain parenchyma. Chemogenetic flattening of these high-energy ionic waves largely impeded cerebrospinal fluid infiltration into and clearance of molecules from the brain parenchyma. Notably, synthesized waves generated through transcranial optogenetic stimulation substantially potentiated cerebrospinal fluid-to-interstitial fluid perfusion. Our study demonstrates that neurons serve as master organizers for brain clearance. This fundamental principle introduces a new theoretical framework for the functioning of macroscopic brain waves.


Assuntos
Encéfalo , Líquido Cefalorraquidiano , Líquido Extracelular , Neurônios , Potenciais de Ação , Encéfalo/citologia , Encéfalo/metabolismo , Ondas Encefálicas/fisiologia , Líquido Cefalorraquidiano/metabolismo , Líquido Extracelular/metabolismo , Sistema Glinfático/metabolismo , Cinética , Rede Nervosa/fisiologia , Neurônios/metabolismo , Optogenética , Tecido Parenquimatoso/metabolismo , Íons/metabolismo
7.
PLoS Comput Biol ; 20(2): e1011896, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38394341

RESUMO

Shared input to a population of neurons induces noise correlations, which can decrease the information carried by a population activity. Inhibitory feedback in recurrent neural networks can reduce the noise correlations and thus increase the information carried by the population activity. However, the activity of inhibitory neurons is costly. This inhibitory feedback decreases the gain of the population. Thus, depolarization of its neurons requires stronger excitatory synaptic input, which is associated with higher ATP consumption. Given that the goal of neural populations is to transmit as much information as possible at minimal metabolic costs, it is unclear whether the increased information transmission reliability provided by inhibitory feedback compensates for the additional costs. We analyze this problem in a network of leaky integrate-and-fire neurons receiving correlated input. By maximizing mutual information with metabolic cost constraints, we show that there is an optimal strength of recurrent connections in the network, which maximizes the value of mutual information-per-cost. For higher values of input correlation, the mutual information-per-cost is higher for recurrent networks with inhibitory feedback compared to feedforward networks without any inhibitory neurons. Our results, therefore, show that the optimal synaptic strength of a recurrent network can be inferred from metabolically efficient coding arguments and that decorrelation of the input by inhibitory feedback compensates for the associated increased metabolic costs.


Assuntos
Rede Nervosa , Transmissão Sináptica , Transmissão Sináptica/fisiologia , Potenciais de Ação/fisiologia , Reprodutibilidade dos Testes , Simulação por Computador , Rede Nervosa/fisiologia , Modelos Neurológicos , Redes Neurais de Computação , Inibição Neural/fisiologia
8.
Chaos ; 34(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38377288

RESUMO

Real neurons connect to each other non-randomly. These connectivity graphs can potentially impact the ability of networks to synchronize, along with the dynamics of neurons and the dynamics of their connections. How the connectivity of networks of conductance-based neuron models like the classical Hodgkin-Huxley model or the Morris-Lecar model impacts synchronizability remains unknown. One powerful tool to resolve the synchronizability of these networks is the master stability function (MSF). Here, we apply and extend the MSF approach to networks of Morris-Lecar neurons with conductance-based coupling to determine under which parameters and for which graphs the synchronous solutions are stable. We consider connectivity graphs with a constant non-zero row sum, where the MSF approach can be readily extended to conductance-based synapses rather than the more well-studied diffusive connectivity case, which primarily applies to gap junction connectivity. In this formulation, the synchronous solution is a single, self-coupled, or "autaptic" neuron. We find that the primary determining parameter for the stability of the synchronous solution is, unsurprisingly, the reversal potential, as it largely dictates the excitatory/inhibitory potential of a synaptic connection. However, the change between "excitatory" and "inhibitory" synapses is rapid, with only a few millivolts separating stability and instability of the synchronous state for most graphs. We also find that for specific coupling strengths (as measured by the global synaptic conductance), islands of synchronizability in the MSF can emerge for inhibitory connectivity. We verified the stability of these islands by direct simulation of pairs of neurons coupled with eigenvalues in the matching spectrum.


Assuntos
Modelos Neurológicos , Neurônios , Neurônios/fisiologia , Transmissão Sináptica/fisiologia , Simulação por Computador , Sinapses/fisiologia , Potenciais de Ação/fisiologia , Rede Nervosa/fisiologia
9.
Cereb Cortex ; 34(2)2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38244562

RESUMO

Theoretical models suggest that executive functions rely on both domain-general and domain-specific processes. Supporting this view, prior brain imaging studies have revealed that executive activations converge and diverge within broadly characterized brain networks. However, the lack of precise anatomical mappings has impeded our understanding of the interplay between domain-general and domain-specific processes. To address this challenge, we used the high-resolution multimodal magnetic resonance imaging approach of the Human Connectome Project to scan participants performing 3 canonical executive tasks: n-back, rule switching, and stop signal. The results reveal that, at the individual level, different executive activations converge within 9 domain-general territories distributed in frontal, parietal, and temporal cortices. Each task exhibits a unique topography characterized by finely detailed activation gradients within domain-general territory shifted toward adjacent resting-state networks; n-back activations shift toward the default mode, rule switching toward dorsal attention, and stop signal toward cingulo-opercular networks. Importantly, the strongest activations arise at multimodal neurobiological definitions of network borders. Matching results are seen in circumscribed regions of the caudate nucleus, thalamus, and cerebellum. The shifting peaks of local gradients at the intersection of task-specific networks provide a novel mechanistic insight into how partially-specialized networks interact with neighboring domain-general territories to generate distinct executive functions.


Assuntos
Conectoma , Função Executiva , Humanos , Função Executiva/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Núcleo Caudado , Atenção/fisiologia , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia
11.
Brain Connect ; 14(1): 70-79, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38164105

RESUMO

Introduction: Neuroimaging studies suggest that the human brain consists of intrinsically organized, large-scale neural networks. Among these networks, the interplay among the default-mode network (DMN), salience network (SN), and central-executive network (CEN) has been widely used to understand the functional interaction patterns in health and disease. This triple network model suggests that the SN causally controls over the DMN and CEN in healthy individuals. This interaction is often referred to as SN's dynamic regulating mechanism. However, such interactions are not well understood in individuals with schizophrenia. Methods: In this study, we leveraged resting-state functional magnetic resonance imaging data from schizophrenia (n = 67) and healthy controls (n = 81) and evaluated the directional functional interactions among DMN, SN, and CEN using stochastic dynamical causal modeling methodology. Results: In healthy controls, our analyses replicated previous findings that SN regulates DMN and CEN activities (Mann-Whitney U test; p < 10-8). In schizophrenia, however, our analyses revealed a disrupted SN-based controlling mechanism over the DMN and CEN (Mann-Whitney U test; p < 10-16). Conclusions: These results indicate that the disrupted controlling mechanism of SN over the other two neural networks may be a candidate neuroimaging phenotype in schizophrenia.


Assuntos
Encéfalo , Esquizofrenia , Humanos , Encéfalo/diagnóstico por imagem , Esquizofrenia/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Vias Neurais/diagnóstico por imagem , Mapeamento Encefálico/métodos , Rede Nervosa/fisiologia
12.
J Neurophysiol ; 131(2): 417-434, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38197163

RESUMO

Network flexibility is important for adaptable behaviors. This includes neuronal switching, where neurons alter their network participation, including changing from single- to dual-network activity. Understanding the implications of neuronal switching requires determining how a switching neuron interacts with each of its networks. Here, we tested 1) whether "home" and second networks, operating via divergent rhythm generation mechanisms, regulate a switching neuron and 2) if a switching neuron, recruited via modulation of intrinsic properties, contributes to rhythm or pattern generation in a new network. Small, well-characterized feeding-related networks (pyloric, ∼1 Hz; gastric mill, ∼0.1 Hz) and identified modulatory inputs make the isolated crab (Cancer borealis) stomatogastric nervous system (STNS) a useful model to study neuronal switching. In particular, the neuropeptide Gly1-SIFamide switches the lateral posterior gastric (LPG) neuron (2 copies) from pyloric-only to dual-frequency pyloric/gastric mill (fast/slow) activity via modulation of LPG-intrinsic properties. Using current injections to manipulate neuronal activity, we found that gastric mill, but not pyloric, network neurons regulated the intrinsically generated LPG slow bursting. Conversely, selective elimination of LPG from both networks using photoinactivation revealed that LPG regulated gastric mill neuron-firing frequencies but was not necessary for gastric mill rhythm generation or coordination. However, LPG alone was sufficient to produce a distinct pattern of network coordination. Thus, modulated intrinsic properties underlying dual-network participation may constrain which networks can regulate switching neuron activity. Furthermore, recruitment via intrinsic properties may occur in modulatory states where it is important for the switching neuron to actively contribute to network output.NEW & NOTEWORTHY We used small, well-characterized networks to investigate interactions between rhythmic networks and neurons that switch their network participation. For a neuron switching into dual-network activity, only the second network regulated its activity in that network. In addition, the switching neuron was sufficient but not necessary to coordinate second network neurons and regulated their activity levels. Thus, regulation of switching neurons may be selective, and a switching neuron is not necessarily simply a follower in additional networks.


Assuntos
Braquiúros , Neurônios , Animais , Neurônios/fisiologia , Piloro/fisiologia , Braquiúros/fisiologia , Gânglios dos Invertebrados/fisiologia , Periodicidade , Rede Nervosa/fisiologia
13.
PLoS Comput Biol ; 20(1): e1011274, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38215166

RESUMO

The network control theory framework holds great potential to inform neurostimulation experiments aimed at inducing desired activity states in the brain. However, the current applicability of the framework is limited by inappropriate modeling of brain dynamics, and an overly ambitious focus on whole-brain activity control. In this work, we leverage recent progress in linear modeling of brain dynamics (effective connectivity) and we exploit the concept of target controllability to focus on the control of a single region or a small subnetwork of nodes. We discuss when control may be possible with a reasonably low energy cost and few stimulation loci, and give general predictions on where to stimulate depending on the subset of regions one wishes to control. Importantly, using the robustly asymmetric effective connectome instead of the symmetric structural connectome (as in previous research), we highlight the fundamentally different roles in- and out-hubs have in the control problem, and the relevance of inhibitory connections. The large degree of inter-individual variation in the effective connectome implies that the control problem is best formulated at the individual level, but we discuss to what extent group results may still prove useful.


Assuntos
Conectoma , Rede Nervosa , Rede Nervosa/fisiologia , Encéfalo/fisiologia , Conectoma/métodos , Imageamento por Ressonância Magnética
14.
Cereb Cortex ; 34(1)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38044469

RESUMO

Brain function changes affect cognitive functions in older adults, yet the relationship between cognition and the dynamic changes of brain networks during naturalistic stimulation is not clear. Here, we recruited the young, middle-aged and older groups from the Cambridge Center for Aging and Neuroscience to investigate the relationship between dynamic metrics of brain networks and cognition using functional magnetic resonance imaging data during movie-watching. We found six reliable co-activation pattern (CAP) states of brain networks grouped into three pairs with opposite activation patterns in three age groups. Compared with young and middle-aged adults, older adults dwelled shorter time in CAP state 4 with deactivated default mode network (DMN) and activated salience, frontoparietal and dorsal-attention networks (DAN), and longer time in state 6 with deactivated DMN and activated DAN and visual network, suggesting altered dynamic interaction between DMN and other brain networks might contribute to cognitive decline in older adults. Meanwhile, older adults showed easier transfer from state 6 to state 3 (activated DMN and deactivated sensorimotor network), suggesting that the fragile antagonism between DMN and other cognitive networks might contribute to cognitive decline in older adults. Our findings provided novel insights into aberrant brain network dynamics associated with cognitive decline.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Cognição/fisiologia , Mapeamento Encefálico , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia
15.
Eur J Neurosci ; 59(2): 238-251, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38062542

RESUMO

Large-scale integration of information across cortical structures, building on neural connectivity, has been proposed to be a key element in supporting human cognitive processing. In electrophysiological neuroimaging studies of reading, quantification of neural interactions has been limited to the level of isolated words or sentences due to artefacts induced by eye movements. Here, we combined magnetoencephalography recording with advanced artefact rejection tools to investigate both cortico-cortical coherence and directed neural interactions during naturalistic reading of full-page texts. Our results show that reading versus visual scanning of text was associated with wide-spread increases of cortico-cortical coherence in the beta and gamma bands. We further show that the reading task was linked to increased directed neural interactions compared to the scanning task across a sparse set of connections within a wide range of frequencies. Together, the results demonstrate that neural connectivity flexibly builds on different frequency bands to support continuous natural reading.


Assuntos
Magnetoencefalografia , Leitura , Humanos , Magnetoencefalografia/métodos , Idioma , Movimentos Oculares , Rede Nervosa/fisiologia
16.
Neural Netw ; 170: 72-93, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37977091

RESUMO

The architecture of communication within the brain, represented by the human connectome, has gained a paramount role in the neuroscience community. Several features of this communication, e.g., the frequency content, spatial topology, and temporal dynamics are currently well established. However, identifying generative models providing the underlying patterns of inhibition/excitation is very challenging. To address this issue, we present a novel generative model to estimate large-scale effective connectivity from MEG. The dynamic evolution of this model is determined by a recurrent Hopfield neural network with asymmetric connections, and thus denoted Recurrent Hopfield Mass Model (RHoMM). Since RHoMM must be applied to binary neurons, it is suitable for analyzing Band Limited Power (BLP) dynamics following a binarization process. We trained RHoMM to predict the MEG dynamics through a gradient descent minimization and we validated it in two steps. First, we showed a significant agreement between the similarity of the effective connectivity patterns and that of the interregional BLP correlation, demonstrating RHoMM's ability to capture individual variability of BLP dynamics. Second, we showed that the simulated BLP correlation connectomes, obtained from RHoMM evolutions of BLP, preserved some important topological features, e.g, the centrality of the real data, assuring the reliability of RHoMM. Compared to other biophysical models, RHoMM is based on recurrent Hopfield neural networks, thus, it has the advantage of being data-driven, less demanding in terms of hyperparameters and scalable to encompass large-scale system interactions. These features are promising for investigating the dynamics of inhibition/excitation at different spatial scales.


Assuntos
Conectoma , Magnetoencefalografia , Humanos , Reprodutibilidade dos Testes , Encéfalo/fisiologia , Redes Neurais de Computação , Rede Nervosa/fisiologia
17.
Artigo em Inglês | MEDLINE | ID: mdl-38083712

RESUMO

Many studies on morphology analysis show that if short inter-stimulus intervals separate tasks, the hemodynamic response amplitude will return to the resting-state baseline before the subsequent stimulation onset; hence, responses to successive tasks do not overlap. Accordingly, popular brain imaging analysis techniques assume changes in hemodynamic response amplitude subside after a short time (around 15 seconds). However, whether this assumption holds when studying brain functional connectivity has yet to be investigated. This paper assesses whether or not the functional connectivity network in control trials returns to the resting-state functional connectivity network. Traditionally, control trials in block-design experiments are used to evaluate response morphology to no stimulus. We analyzed data from an event-related experiment with audio and visual stimuli and resting state. Our results showed that functional connectivity networks during control trials were more similar to that of tasks than resting-state networks. In other words, contrary to task-related changes in the hemodynamic amplitude, where responses settle after a short time, the brain's functional connectivity networks do not return to their intrinsic resting-state network in such short intervals.


Assuntos
Imageamento por Ressonância Magnética , Rede Nervosa , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia , Descanso/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Neuroimagem
18.
Artigo em Inglês | MEDLINE | ID: mdl-38083725

RESUMO

Much neurophysiological evidence revealed motor system is involved in temporal prediction. However, It remains unknown how temporal prediction influences motor-related neural representations. Thus, more neural evidence is needed to understand better how temporal prediction influences the motor. This study designed a rhythmic finger-tap task and formed three temporal prediction conditions, i.e., 1000ms temporal prediction, 1500ms temporal prediction, and no temporal prediction. Behavioral and EEG data from 24 healthy subjects were recorded. The weighted phase lag index was calculated to measure the degree of phase synchronization. Eigenvector centrality and betweenness centrality were used to measure brain connectivity. Behavioral results showed that tap-visual asynchronies were decreased when temporal prediction existed. Phase synchronization results showed, compared to no temporal prediction, the alpha-band phase synchronization between the frontal and central area was reduced in 1000ms temporal prediction, and the beta-band phase synchronization between the frontal and parietal area was decreased in 1500ms temporal prediction. As to the brain connectivity, compared to no temporal prediction condition, the eigenvector centrality of the left frontal in 1500ms temporal prediction was decreased in the alpha band, and the betweenness centrality of the right temporal in 1000ms temporal prediction was reduced in the alpha-band. These results can provide new neural evidence for a better understanding of temporal prediction and motor interactions.


Assuntos
Encéfalo , Eletroencefalografia , Humanos , Eletroencefalografia/métodos , Encéfalo/fisiologia , Sincronização de Fases em Eletroencefalografia , Rede Nervosa/fisiologia , Cabeça
19.
Phys Rev E ; 108(5): L052301, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38115411

RESUMO

Does the brain optimize itself for storage and transmission of information, and if so, how? The critical brain hypothesis is based in statistical physics and posits that the brain self-tunes its dynamics to a critical point or regime to maximize the repertoire of neuronal responses. Yet, the robustness of this regime, especially with respect to changes in the functional connectivity, remains an unsolved fundamental challenge. Here, we show that both scale-free neuronal dynamics and self-similar features of behavioral dynamics persist following significant changes in functional connectivity. Specifically, we find that the psychedelic compound ibogaine that is associated with an altered state of consciousness fundamentally alters the functional connectivity in the retrosplenial cortex of mice. Yet, the scale-free statistics of movement and of neuronal avalanches among behaviorally related neurons remain largely unaltered. This indicates that the propagation of information within biological neural networks is robust to changes in functional organization of subpopulations of neurons, opening up a new perspective on how the adaptive nature of functional networks may lead to optimality of information transmission in the brain.


Assuntos
Encéfalo , Modelos Neurológicos , Camundongos , Animais , Encéfalo/fisiologia , Estado de Consciência/fisiologia , Neurônios/fisiologia , Rede Nervosa/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...